Turbulence and Magnetic Fields in Astrophysical Plasmas

نویسندگان

  • Alexander A Schekochihin
  • Steven C Cowley
چکیده

Magnetic fields permeate the Universe. They are found in planets, stars, accretion discs, galaxies, clusters of galaxies, and the intergalactic medium. While there is often a component of the field that is spatially coherent at the scale of the astrophysical object, the field lines are tangled chaotically and there are magnetic fluctuations at scales that range over orders of magnitude. The cause of this disorder is the turbulent state of the plasma in these systems. This plasma is, as a rule, highly conducting, so the magnetic field lines are entrained by (frozen into) the fluid motion. As the fields are stretched and bent by the turbulence, they can resist deformation by exerting the Lorentz force on the plasma. The turbulent advection of the magnetic field and the field’s back reaction together give rise to the statistically steady state of fully developed MHD turbulence. In this state, energy and momentum injected at large (object-size) scales are transfered to smaller scales and eventually dissipated. Despite over fifty years of research and manymajor advances, a satisfactory theory of MHD turbulence remains elusive. Indeed, even the simplest (most idealised) cases are still not fully understood. One would hope that there are universal properties of MHD turbulence that hold in all applications — or at least in a class of applications. Among the most important questions for astrophysics that a successful theory of turbulence must answer are:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios

Turbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produce...

متن کامل

Development of a Turbulent Outflow During Electron-Positron Magnetic Reconnection

The mass symmetry between the two species in electron-positron (pair) plasmas has interesting consequences for collisionless magnetic reconnection because the Hall term, which plays a crucial role in supporting fast reconnection in electron-proton plasmas, vanishes. We perform kinetic simulations of pair reconnection in systems of various sizes, show that it remains fast, and identify the reaso...

متن کامل

The Self - Similar Turbulent Dynamo

We consider the problem of magnetic-energy amplification by a turbulent flow of conducting fluid. This effect is known as the small-scale turbulent dynamo, and it is believed to be relevant in application to magnetic fields in astrophysical objects. It is, in fact, a generic property of random (in time and/or space) flows that they can amplify magnetic fluctuations at scales smaller than the sc...

متن کامل

Magnetic Reconnection in Astrophysical and Laboratory Plasmas

Magnetic reconnection is a topological rearrangement of magnetic field that converts magnetic energy to plasma energy. Astrophysical flares, from the Earth’s magnetosphere to γ -ray bursts and sawtooth crashes in laboratory plasmas, may all be powered by reconnection. Reconnection is essential for dynamos and the large-scale restructuring known as magnetic self-organization. We review reconnect...

متن کامل

On Cross-phase and the Quenching of the Turbulent Diffusion of Magnetic Fields in Two Dimensions

Nonlinear closure models of the two-dimensional magnetohydrodynamic equations predict that the turbulent diffusivity of magnetic fields in high magnetic Reynolds number flows will be strongly suppressed below the value predicted by simple kinematic models. The consequences of such “resistivity quenching” for models of dissipation and transport in astrophysical plasmas are profound. However, to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005